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Objectives: Understanding the epidemiology of invasive Candida infections is essential to patient management
decisions and antifungal stewardship practices. This study characterized the species distribution and antifungal
susceptibilities of prospectively collected isolates of Candida species causing bloodstream infections (BSIs) in
patients admitted to tertiary care hospitals located in 14 cities across 8 of the 10 Canadian provinces between
2011 and 2016.

Methods: Antifungal susceptibility testing was performed by broth microdilution using CLSI methods, break-
points and epidemiological cut-off values. DNA sequencing of fks loci was performed on all echinocandin-non-
susceptible isolates.

Results: Candida albicans (49.6%), Candida glabrata (20.8%) and Candida parapsilosis complex (12.0%) were
the most common species out of 1882 isolates associated with BSIs. Candida tropicalis (5.2%), Candida krusei
(4.3%), Candida dubliniensis (4.1%), Candida lusitaniae (1.4%) and Candida guilliermondii (1.1%) were less fre-
quently isolated. Between 2011 and 2016, the proportion of C. albicans significantly decreased from 60.9% to
42.1% (P,0.0001) while that of C. glabrata significantly increased from 16.4% to 22.4% (P"0.023). C. albicans
(n"934), C. glabrata (n"392) and C. parapsilosis complex (n"225) exhibited 0.6%, 1.0% and 4.9% resistance to
fluconazole and 0.1%, 2.5% and 0% resistance to micafungin, respectively. Mutations in fks hot-spot regions
were confirmed in all nine micafungin non-susceptible C. glabrata.

Conclusions: Antifungal resistance in contemporary isolates of Candida causing BSIs in Canada is uncommon.
However, the proportion of C. glabrata isolates has increased and echinocandin resistance in this species has
emerged. Ongoing surveillance of local hospital epidemiology and appropriate antifungal stewardship practices
are necessary to preserve the utility of available antifungal agents.

Introduction

Understanding the species distribution and antifungal resistance
risks associated with invasive Candida infections in healthcare
institutions is integral to directing appropriate empirical
antifungal therapy.1–3 Candida species are the most common

fungal pathogens causing nosocomial bloodstream infections
(BSIs) and are associated with significant mortality.4–6 The distri-
bution of Candida species causing BSIs is led by Candida albicans in
most studies, while Candida glabrata, Candida parapsilosis
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complex, Candida tropicalis and Candida krusei comprise the
remaining majority of cases.6–9 C. glabrata is the second most
common cause of candidaemia in many regions and is intrinsically
less susceptible to fluconazole and other azole agents. Recent
reports from Europe, Australia and the USA indicate that candidae-
mia caused by C. glabrata has increased.4,8,10 Further, reports of
echinocandin resistance in Candida BSIs in association with poorer
patient outcome have been increasingly reported and found al-
most exclusively in C. glabrata.11–14

In Canada, the incidence of invasive candidiasis is estimated to
be 5.8/100000 population, with C. albicans, C. glabrata and C. para-
psilosis as the most common species causing candidaemia.9,15–17

Previous Canadian surveillance studies of candidaemia isolates
from 1999 to 2007 describe very few antifungal resistance con-
cerns, using current breakpoints to interpret their findings,16–18

and there have been limited Canadian data published since then
to aid antifungal therapy management decisions.19 As part of the
CANWARD surveillance programme, this study describes the epi-
demiology and antifungal susceptibility of a contemporary collec-
tion of Candida species causing BSIs over a 6 year period in
patients admitted to Canadian hospitals.

Materials and methods

Candida isolates

In conjunction with the bacterial objectives of the CANWARD study, isolates
of Candida species causing BSIs in patients admitted to Canadian tertiary
care centres were prospectively collected by clinical microbiology laborato-
ries in 14 cities across 8 of the 10 Canadian provinces from 2011 to 2016
and shipped to a central reference laboratory (Department of Laboratory
Medicine and Pathology, University of Alberta, Edmonton, Alberta) for anti-
fungal susceptibility testing and confirmation of identification using MALDI-
TOF. From January to October of each year, participating centres collected
up to 10 bloodstream isolates of Candida species per month from patients
with incident candidaemia (1 per patient). Isolate subcultures were pre-
pared and shipped at room temperature in Amies transport medium.
Patient age, gender and hospital admission location (general medicine,
ICU, surgical unit, emergency care or clinic) were submitted with each iso-
late. In total, 1882 isolates of Candida species were received and available
for antifungal susceptibility testing.

Antifungal susceptibility testing
In vitro antifungal susceptibility testing of Candida isolates to polyenes
(amphotericin B), azoles (fluconazole, voriconazole, itraconazole and posa-
conazole) and echinocandins (caspofungin and micafungin) was per-
formed by the reference broth microdilution (BMD) method described in the
CLSI standard M27.20 MICs for all antifungal agents were determined after
24 h of incubation. Weekly quality control of all BMD testing was verified
using C. parapsilosis ATCC 22019 and C. krusei ATCC 6258 strains according
to M27.20 MIC breakpoints and interpretive categories [susceptible, inter-
mediate, susceptible-dose dependent (S-DD) and resistant] were applied
according to the CLSI M60 document,21 with the exception of C. glabrata
and caspofungin, which is known to experience significant in vitro test vari-
ability.22,23 Epidemiological cut-off values (ECVs) and interpretations of WT
and non-WT, as described in the CLSI M59 document, were used for
Candida species lacking CLSI-defined breakpoints.24

Molecular analysis
PCR and sequencing of the fks loci, which encode the 1,3-b-D-glucan syn-
thase inhibitor subunits, were performed on Candida species with

echinocandin MICs that were not susceptible. This was accomplished using
a previously described method and panel of oligonucleotide primers
designed to target fks hot-spot regions.25 Briefly, DNA was extracted using
rapid lysis, PCR was performed for each fks hot spot and locus, and ampli-
cons were sequenced using the ABI 3500. The sequences were translated
using https://web.expasy.org/translate/ and compared with reference
sequences in the UniProt Knowledge Database. Molecular analysis of azole
resistance was beyond the scope of this study.

Statistical analysis
The Cochran–Armitage test was used to determine significant trends in the
proportional distribution of Candida species across the duration of the study
(P,0.05 was considered significant). All analyses were performed using
XLSTAT software version 2016.02.28540 (Addinsoft).

Ethics
The CANWARD study receives annual approval by the University of
Manitoba Research Ethics Board (H2009:059).

Results

Surveillance and patient characteristics

Candida bloodstream isolates were collected from a total of 18
hospital clinical microbiology laboratories located in 14 cities
across 8 of the 10 Canadian provinces. Eight sites participated in all
six surveillance years (73.5% of isolates) and three sites partici-
pated in five surveillance years (17.0% of isolates). Of the 1882
Candida isolates received, annual isolate volumes were 238, 277,
347, 337, 333 and 350 isolates in 2011, 2012, 2013, 2014, 2015
and 2016, respectively. The overall proportion (and annual range)
of isolates from the provinces of British Columbia, Alberta,
Saskatchewan, Manitoba, Ontario, Quebec, New Brunswick and
Nova Scotia was 12.0% (10.5%–13.8%), 13.9% (11.3%–16.9%),
6.6% (5.8%–7.2%), 12.3% (10.4%–16.3%), 34.1% (25.2%–40.0%),
11.3% (3.3%–21.0%), 2.4% (1.4%–3.8%) and 7.4% (4.2%–9.7%),
respectively. In hospital, the total proportion (and annual range) of
Candida BSIs associated with patients admitted to medicine
wards, ICUs, surgical wards, emergency care units and clinics was
42.8% (38.1%–46.6%), 31.7% (27.7%–35.7%), 13.0% (11.4%–
16.8%), 8.2% (7.4%–9.7%) and 3.6% (2.9%–5.2%), respectively
(data not provided for 15 cases). The proportion of Candida BSIs in
adults (.16 years) was 45.1% female (n"803) to 54.9% male
(n"976) while the proportion in paediatric patients was 53.5% fe-
male (n"53) to 46.5% male (n"46); gender was not provided for
three adult patients and one paediatric patient. The median age
(all patients) was 58 (no age provided for 26 cases) with 56.8%
patients aged 17–64 years (n"1055) and 37.9% (n"705) aged
�65. The median age of 100 paediatric patients (4 days to
16 years) was 3 years.

Species distribution

Overall, C. albicans (49.6%, n"934), C. glabrata (20.8%, n"392)
and C. parapsilosis complex (12.0%, n"225) were the most com-
mon species of the 16 species identified between 2011 and 2016
(Figure 1). C. tropicalis (5.2%), C. krusei (4.3%), Candida dubliniensis
(4.1%), Candida lusitaniae (1.4%) and Candida guilliermondii
(1.1%) were less frequently isolated, while Candida inconspicua,
Candida kefyr, Candida norvagensis, Candida pelliculosa, Candida
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sake, Candida sphaerica and Candida utilis as agents of BSIs were
rare (1.4%). Over the 6 year study period, the annual proportion
of C. albicans significantly decreased from 60.9% to 42.1%
(P,0.0001) while that of C. glabrata significantly increased from
16.4% to 22.4% (P"0.023), as shown in Figure 1. These temporal
changes were not affected when only the eight sites that consist-
ently participated in six surveillance years were considered.
Significant trends were not identified for any of the other Candida
species. As shown in Table 1, the rank order of C. albicans, C. glab-
rata and C. parapsilosis complex did not change based on patient
ward location. The rank order of these common species was also
observed for the 11 individual hospital sites that submitted isolates
for at least five of the surveillance years. However, between medi-
cine, ICU and surgical patients, representing 87.5% of Candida iso-
lates, there was an increased proportion of C. glabrata and C.
parapsilosis complex recovered from surgical and medicine
patients, respectively.

MIC distribution and antifungal activity

The majority of C. albicans isolates were susceptible to fluconazole,
with ,1% resistance detected (6/934 isolates) and a normal MIC
distribution (modal MIC, 0.12 mg/L) well below the susceptible MIC
breakpoint. Similarly, 99% of C. glabrata were S-DD (MIC, �32 mg/
L) to fluconazole and 4/392 were fluconazole resistant. Within the
S-DD population, 87.8% of C. glabrata had fluconazole MICs
�4 mg/L; annual modal MICs ranged between 1 and 4 mg/L with
no indication of temporal changes. Voriconazole showed good ac-
tivity against C. glabrata (no CLSI breakpoint) using the established
ECV (�0.25 mg/L), which identified 27/392 (6.9%) isolates as non-
WT; 4/27 were fluconazole resistant and 26/27 had fluconazole
MICs�4 mg/L. Eleven of 225 C. parapsilosis isolates (4.9%) were re-
sistant to fluconazole, three of which were intermediate to vori-
conazole. All other C. parapsilosis were susceptible to voriconazole
(Table 2). C. krusei isolates (n"81) were poorly inhibited by flucon-
azole (modal MIC, 8 mg/L; MIC90, 16 mg/L), as expected, but were
completely susceptible to voriconazole (MIC90, 0.25 mg/L).

The echinocandins were also highly active against most
Candida species. C. albicans was 98.8% and 99.9% susceptible to
caspofungin and micafungin, respectively; all non-susceptible iso-
lates tested in the intermediate category and no resistant isolates
were identified. Echinocandin non-susceptibility (intermediate or
resistant) was detected in nine C. glabrata isolates (2.3%) using
micafungin as a surrogate agent for the class. Five isolates were re-
sistant, with MIC values of 0.5–4 mg/L, and four isolate MICs were
interpreted as intermediate (Table 2). These C. glabrata isolates
were recovered from adult patients, except for a single paediatric
case, in four of the surveillance years from four different health-
care centres. Molecular testing of fks loci identified mutations in
the conserved hot-spot regions of all nine C. glabrata (Table 3).
Three of these C. glabrata showed reduced susceptibility to flucon-
azole, exhibiting MIC values of 64 mg/L (resistant), 32 mg/L (S-DD)
and 16 mg/L (S-DD). Echinocandin resistance was not detected in
C. parapsilosis, C. tropicalis, C. krusei or C. guilliermondii, and CLSI
breakpoints have not been established for other Candida species.

Using the amphotericin B ECV (�2 mg/L) published for C.
albicans, C. glabrata, C. parapsilosis, C. tropicalis and C. krusei, all iso-
lates for these species were considered WT (Table 2). Similarly, WT
MIC values were recorded for fluconazole and micafungin against
all isolates of C. dubliniensis (n"78), C. lusitaniae (n"26) and C. guil-
liermondii (n"21). In the absence of published breakpoints or
ECVs, antifungal MIC values for isolates of the rare species could
not be interpreted. However, abnormally high MICs were not
observed and none of these species is known to express intrinsic
resistance.

Discussion

The findings from this prospective laboratory-based surveillance
study confirm that the epidemiology of Candida species causing
BSIs in Canadian hospitals is relatively consistent with the results
of other previous Canadian surveillance investigations.9,18,19

C. albicans was the most commonly detected species in each year
of surveillance, followed by C. glabrata and C. parapsilosis, compris-
ing .80% of all isolates. There was a significant shift in the propor-
tion of C. glabrata over time, increasing from 16.4% to 22.0% from
2011 to 2016, respectively, and a concomitant decrease in C.
albicans from 60.9% to 42.1%. The emergence of C. glabrata com-
bined with its propensity for resistance to fluconazole and other
azole agents is a notable clinical concern. In Australia, the propor-
tion of C. glabrata in candidaemic patients almost doubled be-
tween 2004 and 2014 (26.7%).8 In the USA, several large
surveillance programmes have independently noted increases in
C. glabrata-associated candidaemia over the past two decades
and collectively verify contemporary BSI isolation rates of 25%–
27%.6,26,27 These same studies report C. albicans identification
rates of 36%–44.4%. Although we can only speculate on what
may be driving this apparent species shift, C. glabrata BSIs are
associated with prior azole exposure and older patient age, while
patients with C. albicans BSIs are younger and less likely to have
prior antifungal exposure.6,26,28 The median age of candidaemic
patients infected with C. albicans and C. glabrata in this study was
58 and 59 years, respectively, and remained constant across the
study period.

Reported rates of antifungal resistance in C. albicans are ex-
tremely low29,30 and our Canadian cohort was no different.
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Figure 1. Temporal distribution of Candida species causing BSIs in
patients admitted to Canadian hospitals between 2011 and 2016.
Shaded bars represent the proportion (%) of each species submitted
relative to the total number of isolates for each surveillance year, which
are ordered from 2011 to 2016, left to right, for each species.
Statistically significant trends in the proportional distribution of C. albi-
cans and C. glabrata across the study period are indicated with respect-
ive P values (Cochran–Armitage test).
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C. albicans were quite susceptible to the azoles (fluconazole MIC90,
0.25 mg/L) and echinocandins (micafungin MIC90, �0.008 mg/L),
with only six fluconazole-resistant isolates and a single isolate
with intermediate susceptibility to the echinocandins.

The reduced utility of fluconazole against C. glabrata, associ-
ated with the up-regulation of drug transporter mechanisms,31,32

and the high rates of resistance consistently identified by ongoing
global surveillance studies29,33–35 have, in part, influenced the role
of echinocandins as first-line treatment options for various patient
populations with candidaemia.1,36 Azoles have a role in managing

patients that are not critically ill and infected with an azole-
susceptible Candida isolate.3 For C. glabrata infections, higher
doses of fluconazole and voriconazole are recommended, based
on low-quality evidence, for azole therapy when isolates are sus-
ceptible.1 Clinicians must be aware, however, that there is no sus-
ceptible interpretation available for C. glabrata against fluconazole
or voriconazole. Rather, all fluconazole MICs�32 mg/L are consid-
ered S-DD and voriconazole MICs do not correlate with clinical out-
come and have no predictive value.21 Evidence informing clearer
guidelines for the appropriate interpretation and use of azoles

Table 1. Distribution of Candida species causing BSIs in hospitalized patients based on ward location, 2011–16

Species

% Isolates per location

medicine (n"805) ICU (n"596) surgery (n"224) emergency care (n"154) clinic (n"68)

C. albicans 46.7 55.2 53.7 40.9 38.2

C. glabrata 19.3 19.3 25.8 26.0 26.5

C. parapsilosis 13.7 8.7 9.4 18.2 13.2

C. tropicalis 6.7 4.2 3.3 3.3 7.4

C. krusei 5.1 4.9 1.6 2.0 5.9

C. dubliniensis 3.9 4.7 4.1 3.9 4.4

C. lusitaniae 1.6 1.5 0.4 0.7 1.5

C. guilliermondii 1.5 0.5 0.0 3.3 1.5

Other Candida species 1.6 1.0 1.7 1.7 1.4

Table 2. Antifungal MIC distributions and susceptibility interpretations of common Candida species causing candidaemia in patients admitted to
Canadian hospitals between 2011 and 2016

Organism (no. tested) Antifungal agent Modal MIC (mg/L) MIC90 (mg/L) MIC range (mg/L) % S (% S-DD)a % R % WT

C. albicans (934) amphotericin B 0.25 0.5 �0.06–1 – – 100

fluconazole 0.12 0.25 �0.06 to .64 99.4 0.6

voriconazole �0.015 �0.015 �0.015 to .16 99.6 0.4

posaconazole �0.015 0.03 �0.015 to .16 – – 99.0

caspofungin �0.008 0.12 �0.008–0.5 98.8 0

micafungin �0.008 �0.008 �0.008–0.5 99.9 0

C. glabrata (392) amphotericin B 0.5 0.5 �0.06–1 – – 100

fluconazole 2 8 �0.06–64 (99.0) 1.0

voriconazole 0.06 0.25 �0.015–2 – – 93.1

posaconazole 0.12 0.5 �0.015–4 – – 99.5

micafungin �0.008 0.015 �0.008–4 97.5 2.5

C. parapsilosis (225) amphotericin B 0.5 1 0.12–1 – – 100

fluconazole 0.5 1 �0.06–16 95.1 4.9

voriconazole �0.015 0.03 �0.015–0.5 98.7 0

posaconazole �0.015 0.03 �0.015–0.5 – – 99.1

caspofungin 0.5 1 0.015–2 100 0

micafungin 0.5 1 �0.008–2 100 0

C. tropicalis (98) amphotericin B 0.5 1 0.25–1 – – 100

fluconazole 0.25 0.5 �0.06–8 96.9 3.1

voriconazole �0.015 0.06 �0.015–2 96.9 2.1

posaconazole �0.015 0.06 �0.015–0.5 – – 98.0

caspofungin 0.12 0.25 �0.008–0.5 99.0 0

micafungin �0.008 0.015 �0.008–0.12 100 0

a–, no CLSI-published breakpoint.

Antifungal resistance and species distribution of candidaemia in Canada JAC

iv51

D
ow

nloaded from
 https://academ

ic.oup.com
/jac/article/74/Supplem

ent_4/iv48/5553081 by guest on 18 July 2023



against C. glabrata is truly warranted to optimize azole utility and
limit the selection of echinocandin resistance.

In this surveillance, we observed that echinocandin resistance
in invasive C. glabrata is emerging in Canadian hospitals, from an
otherwise susceptible population (micafungin MIC90, 0.015 mg/L),
which had not been described in previous Canadian studies.16–18

In the USA, several studies have recently highlighted significant
increases in echinocandin-resistant C. glabrata in patients with in-
vasive candidiasis, with rates ranging between 7.8% and
12.3%.11,12,37 Of equal or greater concern is the discovery that
large proportions of echinocandin-resistant C. glabrata are also re-
sistant to azoles.11–13 Co-resistance in this study was only identi-
fied in a single C. glabrata isolate and echinocandin resistance was
infrequent and intermittently distributed across study years and
participating centres. The amino acid substitutions conferred by
the fks mutations detected in our resistant isolates, namely S629P
in FKS1 and S663P in FKS2, have been associated with a marked re-
duction in the activity of the C. glabrata 1,3-b-D-glucan synthase
(echinocandin target) and resistant MIC values.38,39 Further, a re-
cent case report of an invasive candidiasis patient infected with
one of the fks mutant C. glabrata strains described in the present
study concurs with predisposing risk factors and echinocandin re-
sistance development associated with clinical treatment failure.40

The evidence to date clearly demonstrates that the relationship of
fks mutations, resistant MICs and clinical treatment failure in
C. glabrata candidaemia patients with previous or prolonged ex-
posure to echinocandin therapy is very strong and underscores the
importance of appropriate antifungal stewardship measures, in
alignment with treatment guidelines, to mitigate further resist-
ance selection.1,11,41–43

The level of fluconazole resistance detected in C. parapsilosis
was comparable to rates recently reported elsewhere.35 Less is
understood about the mechanisms of azole resistance in
C. parapsilosis but a recent study established a correlation with an
alteration in the 14-a-demethylase target and overexpression of
an efflux pump.44 Due to a naturally encoded FKS polymorphism,
the potency of echinocandins is reduced against C. parapsilosis
and, although there are no reports of emerging resistance, their
role in patient management is secondary to azoles in various pa-
tient groups.1

Current evidence highlights that resistance to azoles and echi-
nocandins is more common in Candida species other than

C. albicans, which is attributed, in part, to inherent mechanisms of
resistance encoded in these species. Risk factors associated with
invasive infections caused by non-albicans Candida species
and the concomitant selection of resistance are well described
but strategies to mitigate these epidemiological changes are lim-
ited by the few antifungal class options available for patient
management.

In conclusion, our findings demonstrate that the activity of cur-
rent antifungal agents against Candida species causing BSIs in
Canadian hospitals is excellent. However, laboratory-based surveil-
lance of BSIs cannot fully capture the extent of de novo resistance
emergence in the broader context of invasive candidiasis. Ongoing
surveillance of the local epidemiology of invasive Candida infec-
tions must also be integrated with appropriate risk-based suscepti-
bility testing practices and antifungal stewardship programmes.
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